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1. Introduction 

This report provides all of the necessary details of the analysis of dipole antennas printed on 

grounded magnetodielectric substrates. Since the sources considered are essentially impulses, 

suitable Green’s functions could be defined from the formulas contained to facilitate analysis of 

any radiating sources by superposition. The interest in magnetodielectric substrates stems from 

the expectation that new materials possessing specially tailored magnetic properties may 

revolutionize the engineering of thin planar antennas. Since these materials often require 

complicated constitutive equations to describe their properties rigorously, the solution of intricate 

boundary value problems has become important to the understanding of the fundamental 

properties of associated radiating structures.  

The boundary value problem considered in this report is simplified substantially by assuming 

that the magnetodielectric may be modeled as a simple material with scalar constitutive 

parameters. This approximation is likely not entirely satisfactory; however, it does reduce the 

problem under consideration to a well-known boundary value problem in applied 

electromagnetics. Despite the extensive amount of existing literature treating this problem, no 

completely self-contained treatment of the mathematical boundary value problem itself was 

found. For this reason, this problem is given a full treatment to demonstrate the method of attack, 

which may, in future research, be extended to treat the case of magnetic substrates described by a 

more realistic set of constitutive equations. 

Following Arnold Sommerfeld, we pose the boundary value problem in terms of magnetic vector 

potential and proceed to solve for the unknown coefficients by applying the boundary conditions 

(the complete derivation of which may be found in Appendix A). In the second section, the 

electromagnetic field is calculated from the magnetic vector potential. Here, we expend some 

additional effort to reduce the form of solution to an especially compact and convenient form. 

These solutions may be compared for accuracy to the solutions reported in the references. 

Sections 3–6 are devoted to further analysis and manipulation of the solutions to obtain results 

useful in practice such as surface wave excitation, far-field radiation, directivity, radiation 

resistance, and efficiency. Finally, it should be noted that a novel approach is used in the 

treatment of the complex-valued square root functions in the theory of complex integration used 

to derive the surface waves excited on the magnetodielectric substrate. Appendix B shows how a 

conventional definition for the square roots can be given, which can be shown to provide all of 

the necessary (and sufficient) properties to enable a contour to be closed in the lower half 

complex plane. 
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2. Solution of the Boundary Value Problem 

The boundary value problem is illustrated in Fig. 1. 

 

Fig. 1   The boundary value problem 

Here we have an x-directed Hertzian dipole situated at an air-dielectric interface. The dielectric 

layer has a thickness h and is backed by a perfect electric conductor (PEC) plane located at  

z = –h. The current density associated with the Hertzian dipole is 

 𝑱 = 𝒙̂ℓ𝐼0𝛿(𝒓) (1) 

The electromagnetic field generated by this current can be represented by 2 components of 

vector magnetic potential:1 

 𝑨 = 𝒙̂𝐴𝑥 + 𝒛̂𝐴𝑧 (2) 

which satisfies the homogeneous Helmholtz equation in both regions, but not at the z=0 

interface: 

 (∇2 + 𝑘2)𝑨 = 0 (3) 

A general solution to Eq. 3 may be obtained for the Cartesian components of 𝑨: 

 

𝐴𝑢 = ∬ 𝐴𝑢̃𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

𝐴𝑢̃ = 𝑎𝑒−𝑗𝑘𝑧𝑧 + 𝑏𝑒𝑗𝑘𝑧𝑧 

𝑘𝑧 = √𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2
 

(4) 

The solution to the problem consists of finding the coefficients (𝑎, 𝑏) that satisfy all the boundary 

conditions. The geometry of the current problem suggests that we set 

 𝐴𝑥1
̃ = 𝑎𝑒−𝑗𝑘𝑧1𝑧        ,        𝑧 > 0 

𝐴𝑧1
̃ = 𝑏𝑒−𝑗𝑘𝑧1𝑧        ,        𝑧 > 0 

𝐴𝑥2
̃ = 𝑐𝑒−𝑗𝑘𝑧2𝑧 + 𝑑𝑒𝑗𝑘𝑧2𝑧         ,       − ℎ < 𝑧 < 0 

(5) 
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𝐴𝑧2
̃ = 𝑓𝑒−𝑗𝑘𝑧2𝑧 + 𝑔𝑒𝑗𝑘𝑧2𝑧         ,       − ℎ < 𝑧 < 0. 

In order to determine all of the unknown coefficients in Eq. 5, we require 6 boundary conditions. 

The derivation of these conditions is somewhat involved. They are listed below (see Appendix A 

for details). 

 𝐴𝑥2
̃ │

𝑧=−ℎ
= 0 (6) 

 𝜕𝐴𝑧2
̃

𝜕𝑧
│

𝑧=−ℎ
= 0 (7) 

 
𝐴𝑧1
̃ │

𝑧=0+ =
1

𝜇𝑟
𝐴𝑧2
̃ │

𝑧=0− (8) 

 𝜕𝐴𝑥1
̃

𝜕𝑧
│

𝑧=0+ −
1

𝜇𝑟

𝜕𝐴𝑥2
̃

𝜕𝑧
│

𝑧=0− = −𝜇0ℓ𝐼0 (9) 

 𝐴𝑥1
̃ │

𝑧=0+ = 𝐴𝑥2
̃ │

𝑧=0−  (10) 

 𝜕𝐴𝑧1
̃

𝜕𝑧
│

𝑧=0+ −
1

𝜇𝑟𝜀𝑟

𝜕𝐴𝑧2
̃

𝜕𝑧
│

𝑧=0− = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟
𝐴𝑥1
̃ │

𝑧=0
. (11) 

Using the expression for 𝐴𝑥2
̃  in Eq. 6, we find 

𝑐𝑒𝑗𝑘𝑧2ℎ + 𝑑𝑒−𝑗𝑘𝑧2ℎ = 0 
 𝑑 = −𝑐𝑒2𝑗𝑘𝑧2ℎ. (12) 

Similarly, from Eq. 7, 

−𝑗𝑘𝑧2
𝑓𝑒𝑗𝑘𝑧2ℎ + 𝑗𝑘𝑧2

𝑔𝑒−𝑗𝑘𝑧2ℎ = 0 

 𝑔 = 𝑓𝑒2𝑗𝑘𝑧2ℎ. (13) 

Using Eqs. 12 and 13, we can return to Eq. 5 and update our expressions as follows: 

 𝐴𝑥1
̃ = 𝑎𝑒−𝑗𝑘𝑧1𝑧        ,        𝑧 > 0 

𝐴𝑧1
̃ = 𝑏𝑒−𝑗𝑘𝑧1𝑧        ,        𝑧 > 0 

𝐴𝑥2
̃ = 𝑐(𝑒−𝑗𝑘𝑧2𝑧 − 𝑒2𝑗𝑘𝑧2ℎ𝑒𝑗𝑘𝑧2𝑧)         ,       − ℎ < 𝑧 < 0 

𝐴𝑧2
̃ = 𝑓(𝑒−𝑗𝑘𝑧2𝑧 + 𝑒2𝑗𝑘𝑧2ℎ𝑒𝑗𝑘𝑧2𝑧)         ,       − ℎ < 𝑧 < 0. 

(14) 

Next, we plug the updated expressions Eq. 14 into the boundary condition Eq. 9: 

 
−𝑗𝑘𝑧1

𝑎 −
1

𝜇𝑟
𝑐(−𝑗𝑘𝑧2

− 𝑗𝑘𝑧2
𝑒2𝑗𝑘𝑧2ℎ) = −𝜇0ℓ𝐼0. (15) 

Similarly, from Eq. 10, 

 𝑎 = 𝑐(1 − 𝑒2𝑗𝑘𝑧2ℎ). (16) 

Substituting Eq. 16 into Eq. 15, 
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−𝑗𝑘𝑧1
𝑐(1 − 𝑒2𝑗𝑘𝑧2ℎ) +

1

𝜇𝑟
𝑗𝑘𝑧2

𝑐(1 + 𝑒2𝑗𝑘𝑧2ℎ) = −𝜇0ℓ𝐼0 

−𝑗𝑘𝑧1
𝑐𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2ℎ − 𝑒𝑗𝑘𝑧2ℎ) +

1

𝜇𝑟
𝑗𝑘𝑧2

𝑐𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2ℎ + 𝑒𝑗𝑘𝑧2ℎ) = −𝜇0ℓ𝐼0 

−2𝑘𝑧1
𝑐𝑒𝑗𝑘𝑧2ℎ sin(𝑘𝑧2

ℎ) +
2

𝜇𝑟
𝑗𝑘𝑧2

𝑐𝑒𝑗𝑘𝑧2ℎ cos(𝑘𝑧2
ℎ) = −𝜇0ℓ𝐼0 

 2𝑗𝑐 sin(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ[𝜇𝑟𝑗𝑘𝑧1

+ 𝑘𝑧2
cot(𝑘𝑧2

ℎ)] = −𝜇0𝜇𝑟ℓ𝐼0 (17) 

We denote the bracketed expression in Eq. 17 as follows:2 

 𝐷𝑇𝐸 = 𝜇𝑟𝑗𝑘𝑧1
+ 𝑘𝑧2

cot(𝑘𝑧2
ℎ) (18) 

Then, 

 
𝑐 =

−𝜇0𝜇𝑟ℓ𝐼0

2𝑗𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

 (19) 

Substitution of Eq. 19 into Eq. 16 gives 

𝑎 =
−𝜇0𝜇𝑟ℓ𝐼0

2𝑗𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

(1 − 𝑒2𝑗𝑘𝑧2ℎ) 

𝑎 =
−𝜇0𝜇𝑟ℓ𝐼0

2𝑗𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2ℎ − 𝑒𝑗𝑘𝑧2ℎ) 

 
𝑎 =

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
 (20) 

Next, we apply boundary condition Eq. 8, obtaining 

 
𝑏 =

1

𝜇𝑟
𝑓(1 + 𝑒2𝑗𝑘𝑧2ℎ) (21) 

and, from boundary condition Eq. 11, 

 
−𝑗𝑘𝑧1

𝑏 −
1

𝜇𝑟𝜀𝑟
𝑓(−𝑗𝑘𝑧2

+ 𝑗𝑘𝑧2
𝑒2𝑗𝑘𝑧2ℎ) = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟
𝑎 (22) 

Substitution of Eqs. 20 and 21 into Eq. 22 gives 

−𝑗𝑘𝑧1

1

𝜇𝑟
𝑓(1 + 𝑒2𝑗𝑘𝑧2ℎ) −

1

𝜇𝑟𝜀𝑟
𝑓(−𝑗𝑘𝑧2

+ 𝑗𝑘𝑧2
𝑒2𝑗𝑘𝑧2ℎ) = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
 

−𝑗𝑘𝑧1

1

𝜇𝑟
𝑓𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2ℎ + 𝑒𝑗𝑘𝑧2ℎ) + 𝑗𝑘𝑧2

1

𝜇𝑟𝜀𝑟
𝑓𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2ℎ − 𝑒𝑗𝑘𝑧2ℎ)

= 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
 

−2𝑗𝑘𝑧1

1

𝜇𝑟
𝑓𝑒𝑗𝑘𝑧2ℎ cos(𝑘𝑧2

ℎ) + 2𝑘𝑧2

1

𝜇𝑟𝜀𝑟
𝑓𝑒𝑗𝑘𝑧2ℎ sin(𝑘𝑧2

ℎ) = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
 

       
−2𝑓 cos(𝑘𝑧2

ℎ) 𝑒𝑗𝑘𝑧2ℎ

𝜇𝑟𝜀𝑟
[𝜀𝑟𝑗𝑘𝑧1

− 𝑘𝑧2
tan(𝑘𝑧2

ℎ)] = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
 (23) 
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We denote the bracketed expression in Eq. 23 as follows:2 

 𝐷𝑇𝑀 = 𝜀𝑟𝑗𝑘𝑧1
− 𝑘𝑧2

tan(𝑘𝑧2
ℎ) (24) 

Then, 

 
𝑓 =

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

2𝐷𝑇𝐸 𝐷𝑇𝑀cos(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

 (25) 

Substitution of Eq. 25 into Eq. 21 gives 

𝑏 =
1

𝜇𝑟

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

2𝐷𝑇𝐸 𝐷𝑇𝑀cos(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

(1 + 𝑒2𝑗𝑘𝑧2ℎ) 

𝑏 =
−𝜇0ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

2𝐷𝑇𝐸 𝐷𝑇𝑀cos(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2ℎ + 𝑒𝑗𝑘𝑧2ℎ) 

 
𝑏 =

−𝜇0ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

𝐷𝑇𝐸𝐷𝑇𝑀
 (26) 

This completes the solution for the unknown coefficients. We can now return to Eq. 14 and write 

𝐴𝑥2
̃ =

−𝜇0𝜇𝑟ℓ𝐼0

2𝑗𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

(𝑒−𝑗𝑘𝑧2𝑧 − 𝑒2𝑗𝑘𝑧2ℎ𝑒𝑗𝑘𝑧2𝑧) 

𝐴𝑥2
̃ =

−𝜇0𝜇𝑟ℓ𝐼0

2𝑗𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

𝑒𝑗𝑘𝑧2ℎ(𝑒−𝑗𝑘𝑧2
(𝑧+ℎ) − 𝑒𝑗𝑘𝑧2

(𝑧+ℎ)) 

 

𝐴𝑥2
̃ =

𝜇0𝜇𝑟ℓ𝐼0 sin[𝑘𝑧2
(𝑧 + ℎ)]

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

 

 

(27) 

Similarly, 

𝐴𝑧2
̃ =

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

2𝐷𝑇𝐸 𝐷𝑇𝑀cos(𝑘𝑧2
ℎ) 𝑒𝑗𝑘𝑧2ℎ

(𝑒−𝑗𝑘𝑧2𝑧 + 𝑒2𝑗𝑘𝑧2ℎ𝑒𝑗𝑘𝑧2𝑧) 

 

𝐴𝑧2
̃ =

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1) cos[𝑘𝑧2
(𝑧 + ℎ)]

𝐷𝑇𝐸 𝐷𝑇𝑀cos(𝑘𝑧2
ℎ)

 

 

(28) 
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Assembling all of our results, the complete solution to the boundary value problem is 

 
𝐴𝑥1
̃ =

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧          ,        𝑧 > 0 

𝐴𝑧1
̃ =

−𝜇0ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧        ,        𝑧 > 0 

𝐴𝑥2
̃ =

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

sin[𝑘𝑧2
(𝑧 + ℎ)]     ,      − ℎ < 𝑧 < 0 

𝐴𝑧2
̃ =

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

𝐷𝑇𝐸 𝐷𝑇𝑀cos(𝑘𝑧2
ℎ)

cos[𝑘𝑧2
(𝑧 + ℎ)]      ,       − ℎ < 𝑧 < 0 

𝐷𝑇𝐸 = 𝜇𝑟𝑗𝑘𝑧1
+ 𝑘𝑧2

cot(𝑘𝑧2
ℎ) 

𝐷𝑇𝑀 = 𝜀𝑟𝑗𝑘𝑧1
− 𝑘𝑧2

tan(𝑘𝑧2
ℎ) 

𝑘𝑧1
= √𝑘0

2 − 𝑘𝑥
2 − 𝑘𝑦

2
 

𝑘𝑧2
= √𝜇𝑟𝜀𝑟𝑘0

2 − 𝑘𝑥
2 − 𝑘𝑦

2
 

(29) 

 

Note that a 2-dimensional inverse Fourier transform is required to recover the spatial dependence 

of the fields. It is also worth mentioning here that 𝐷𝑇𝐸  and 𝐷𝑇𝑀 represent the dispersion 

equations for supported surface wave modes that are transverse electric (TE) and transverse 

magnetic (TM), respectively, to the 𝒛̂ axis. As such, our next step is to derive the z-components 

of the electric and magnetic fields. Most quantities of interest can be calculated directly from 

these fields. 

3. Z-directed Electric and Magnetic Fields 

The z-components of the electric and magnetic fields are related to the magnetic vector potential 

as follows: 

 
𝐻𝑧̃ =

𝑗𝑘𝑦

𝜇
𝐴𝑥̃ 

𝐸𝑧̃ =
1

𝑗𝜔𝜇𝜀
[−𝑗𝑘𝑥

𝜕𝐴𝑥̃

𝜕𝑧
+ (𝑘𝑥

2 + 𝑘𝑦
2)𝐴𝑧̃] 

 

(30) 

The equation for the z-directed magnetic field is rather simple. Using our results from Eq. 29, we 

obtain 
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𝐻𝑧1
̃ =

ℓ𝐼0𝜇𝑟𝑗𝑘𝑦

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧   ,   𝑧 > 0  

𝐻𝑧2
̃ =

ℓ𝐼0𝑗𝑘𝑦

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

sin[𝑘𝑧2
(𝑧 + ℎ)]    ,   − ℎ < 𝑧 < 0  

(31) 

Next, focusing on the z-directed electric field for 𝑧 > 0, we first write 

 

−𝑗𝑘𝑥

𝜕𝐴𝑥1
̃

𝜕𝑧
=

−𝜇0𝜇𝑟ℓ𝐼0𝑘𝑥𝑘𝑧1

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧 

(32) 

Substitution of Eq. 32 and the expression for 𝐴𝑧1
̃ from Eq. 29 into Eq. 30 yields 

 

𝐸𝑧1
̃ =

ℓ𝐼0𝜂0𝑗𝑘𝑥

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧[𝑗(𝜇𝑟𝜀𝑟 − 1)(𝑘𝑥

2 + 𝑘𝑦
2) + 𝜇𝑟𝑘𝑧1

𝐷𝑇𝑀] 

 

(33) 

Although it is difficult to tell, the form of Eq. 33 can actually be considerably simplified. In a 

(non-obvious) step, 

(𝜇𝑟𝜀𝑟 − 1)(𝑘𝑥
2 + 𝑘𝑦

2) = 𝜇𝑟𝜀𝑟(𝑘𝑥
2 + 𝑘𝑦

2) − (𝑘𝑥
2 + 𝑘𝑦

2) 

(𝜇𝑟𝜀𝑟 − 1)(𝑘𝑥
2 + 𝑘𝑦

2) = 𝜇𝑟𝜀𝑟(𝑘0
2 − 𝑘𝑧1

2) − (𝜇𝑟𝜀𝑟𝑘0
2 − 𝑘𝑧2

2) 

 (𝜇𝑟𝜀𝑟 − 1)(𝑘𝑥
2 + 𝑘𝑦

2) = 𝑘𝑧2

2 − 𝜇𝑟𝜀𝑟𝑘𝑧1

2
 (34) 

We substitute Eq. 34 into Eq. 33: 

𝐸𝑧1
̃ =

ℓ𝐼0𝜂0𝑗𝑘𝑥

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧[𝑗(𝑘𝑧2

2 − 𝜇𝑟𝜀𝑟𝑘𝑧1

2) + 𝜇𝑟𝑘𝑧1
𝐷𝑇𝑀] 

𝐸𝑧1
̃ =

ℓ𝐼0𝜂0𝑗𝑘𝑥

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧[𝑗𝑘𝑧2

2 + 𝜇𝑟𝑘𝑧1
(𝐷𝑇𝑀 − 𝜀𝑟𝑗𝑘𝑧1

)] 

𝐸𝑧1
̃ =

ℓ𝐼0𝜂0𝑗𝑘𝑥

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧[𝑗𝑘𝑧2

2 + 𝜇𝑟𝑘𝑧1
(𝜀𝑟𝑗𝑘𝑧1

− 𝑘𝑧2
tan(𝑘𝑧2

ℎ) − 𝜀𝑟𝑗𝑘𝑧1
)] 

𝐸𝑧1
̃ =

ℓ𝐼0𝜂0𝑗𝑘𝑥

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧[𝑗𝑘𝑧2

2 − 𝜇𝑟𝑘𝑧1
𝑘𝑧2

tan(𝑘𝑧2
ℎ)] 

𝐸𝑧1
̃ = −

ℓ𝐼0𝜂0𝑘𝑥𝑘𝑧2

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧[𝑘𝑧2
cot(𝑘𝑧2

ℎ) + 𝜇𝑟𝑗𝑘𝑧1
] 

𝐸𝑧1
̃ = −

ℓ𝐼0𝜂0𝑘𝑥𝑘𝑧2

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧[𝐷𝑇𝐸] 

 
𝐸𝑧1
̃ = −

ℓ𝐼0𝜂0𝑘𝑥𝑘𝑧2

𝑘0𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧     ,   𝑧 > 0   (35) 
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Lastly, we must find the z-directed electric field for −ℎ < 𝑧 < 0. As before, we first write 

 
−𝑗𝑘𝑥

𝜕𝐴𝑥2
̃

𝜕𝑧
=

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥𝑘𝑧2

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

cos[𝑘𝑧2
(𝑧 + ℎ)] (36) 

Substitution of Eq. 36 and the expression for 𝐴𝑧2
̃ from Eq. 29 into Eq. 30 yields 

𝐸𝑧2
̃ =

−𝜇0𝜇𝑟ℓ𝐼0𝑗𝑘𝑥

𝑗𝜔𝜇0𝜇𝑟𝜀0𝜀𝑟𝐷𝑇𝐸
cos[𝑘𝑧2

(𝑧 + ℎ)] [
(𝜇𝑟𝜀𝑟 − 1)(𝑘𝑥

2 + 𝑘𝑦
2)

𝐷𝑇𝑀cos(𝑘𝑧2
ℎ)

+
𝑘𝑧2

sin(𝑘𝑧2
ℎ)

]. 
(37) 

As it was for 𝐸𝑧1
̃ , we can also simplify Eq. 37 considerably: 

𝐸𝑧2
̃ =

−ℓ𝐼0𝑘𝑥

𝜔𝜀0𝜀𝑟𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[(𝜇𝑟𝜀𝑟 − 1)(𝑘𝑥
2 + 𝑘𝑦

2) + 𝐷𝑇𝑀𝑘𝑧2
cot(𝑘𝑧2

ℎ)] 

𝐸𝑧2
̃ =

−ℓ𝐼0𝑘𝑥

𝜔𝜀0𝜀𝑟𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[(𝑘𝑧2

2 − 𝜇𝑟𝜀𝑟𝑘𝑧1

2)

+ (𝜀𝑟𝑗𝑘𝑧1
− 𝑘𝑧2

tan(𝑘𝑧2
ℎ))𝑘𝑧2

cot(𝑘𝑧2
ℎ)] 

𝐸𝑧2
̃ =

−ℓ𝐼0𝑘𝑥

𝜔𝜀0𝜀𝑟𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[𝑘𝑧2

2 − 𝜇𝑟𝜀𝑟𝑘𝑧1

2 + 𝜀𝑟𝑗𝑘𝑧1
𝑘𝑧2

cot(𝑘𝑧2
ℎ) − 𝑘𝑧2

2] 

𝐸𝑧2
̃ =

−ℓ𝐼0𝑘𝑥

𝜔𝜀0𝜀𝑟𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[𝜇𝑟𝜀𝑟𝑘𝑧1

2 + 𝜀𝑟𝑗𝑘𝑧1
𝑘𝑧2

cot(𝑘𝑧2
ℎ)] 

𝐸𝑧2
̃ =

−𝜀𝑟ℓ𝐼0𝑘𝑥𝑘𝑧1

𝜔𝜀0𝜀𝑟𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[𝜇𝑟𝑘𝑧1
+ 𝑗𝑘𝑧2

cot(𝑘𝑧2
ℎ)] 

𝐸𝑧2
̃ =

−ℓ𝐼0𝑗𝑘𝑥𝑘𝑧1

𝜔𝜀0𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[𝜇𝑟𝑗𝑘𝑧1
+ 𝑘𝑧2

cot(𝑘𝑧2
ℎ)] 

𝐸𝑧2
̃ =

−ℓ𝐼0𝑗𝑘𝑥𝑘𝑧1

𝜔𝜀0𝐷𝑇𝐸𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

[𝐷𝑇𝐸] 

 

𝐸𝑧2
̃ = −

ℓ𝐼0𝜂0𝑗𝑘𝑥𝑘𝑧1

𝑘0𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

     , −ℎ < 𝑧 < 0   (38) 
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Assembling these results, we get the following: 

 
𝐻𝑧1
̃ =

ℓ𝐼0𝜇𝑟𝑗𝑘𝑦

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧          ,        𝑧 > 0 

𝐻𝑧2
̃ =

ℓ𝐼0𝑗𝑘𝑦

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

sin[𝑘𝑧2
(𝑧 + ℎ)]         ,        − ℎ < 𝑧 < 0 

𝐸𝑧1
̃ = −

ℓ𝐼0𝜂0𝑘𝑥𝑘𝑧2

𝑘0𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧    ,      𝑧 > 0 

𝐸𝑧2
̃ = −

ℓ𝐼0𝜂0𝑗𝑘𝑥𝑘𝑧1

𝑘0𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

     ,       − ℎ < 𝑧 < 0 

(39) 

 

As mentioned previously, in order to determine the actual spatial dependence of the electric and 

magnetic fields, we must perform the inverse 2-dimensional Fourier transform of the expressions 

in Eq. 39. Unfortunately, it appears to be impossible to integrate Eq. 39 in closed form. However, 

far from the Hertzian dipole, we can employ the stationary phase approximation to the integrands 

to obtain the far-fields. Additionally, it is also possible to extract TE and TM surface wave fields 

by interpreting the integral as a contour integral in the complex 𝑘𝑥 and 𝑘𝑦 domains. 

4. Far-Field Radiation 

From Eq. 39, we could, for instance, write the solution for the z-directed electric field above the 

substrate as 

𝐸𝑧1
=

1

(2𝜋)2
∬ 𝐸𝑧1

̃ 𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

 
𝐸𝑧1

= −
1

(2𝜋)2
∬

ℓ𝐼0𝜂0𝑘𝑥𝑘𝑧2

𝑘0𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

(40) 

The integral Eq. 40 is of a general form for which the stationary phase approximation is well 

known:3 

 

𝐸𝑧1
≈ −

ℓ𝐼0𝜂0𝑗𝑘𝑥𝑠
𝑘𝑧2𝑠

cos 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
   ,   (𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑) , 

(41) 

where 
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 𝑘𝑥𝑠
= 𝑘0 sin 𝜃 cos 𝜙 

𝑘𝑦𝑠
= 𝑘0 sin 𝜃 sin 𝜙 

𝑘𝑧1𝑠
= 𝑘0 cos 𝜃 

𝑘𝑧2𝑠
= 𝑘0√𝜇𝑟𝜀𝑟 − (sin 𝜃)2 

𝐷𝑇𝐸𝑠
= 𝜇𝑟𝑗𝑘𝑧1𝑠

+ 𝑘𝑧2𝑠
cot (𝑘𝑧2𝑠

ℎ) 

𝐷𝑇𝑀𝑠
= 𝜀𝑟𝑗𝑘𝑧1𝑠

− 𝑘𝑧2𝑠
tan (𝑘𝑧2𝑠

ℎ) 

(42) 

 

Similarly, 

𝐻𝑧1
=

1

(2𝜋)2
∬ 𝐻𝑧1

̃ 𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

 

𝐻𝑧1
=

1

(2𝜋)2
∬

ℓ𝐼0𝜇𝑟𝑗𝑘𝑦

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 
(43) 

and 

 

𝐻𝑧1
≈ −

ℓ𝐼0𝜇𝑟𝑘𝑦𝑠
cos 𝜃

𝐷𝑇𝐸𝑠

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
   ,   (𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑)  

(44) 

Additionally, under the stationary phase approximation, 

 𝐸𝑟 = 0 

𝐸𝜃 = −
𝐸𝑧

sin 𝜃
 

𝐸𝜙 =
𝜂0𝐻𝑧

sin 𝜃
 

(45) 

Therefore, a good approximation to the radiated field in the far-field in the upper hemisphere is 

 𝐸𝑟 = 0 

𝐸𝜃 =
ℓ𝐼0𝜂0𝑗𝑘𝑥𝑠

𝑘𝑧2𝑠
cot 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
 

𝐸𝜙 = −
ℓ𝐼0𝜂0𝜇𝑟𝑘𝑦𝑠

cot 𝜃

𝐷𝑇𝐸𝑠

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
 

(46) 
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5. Surface Wave Fields 

We now turn toward the derivation of the surface wave fields generated by the Hertzian dipole. 

In order to do this, we must interpret our integrals as contour integrals in the complex 𝑘𝑥 and 𝑘𝑦 

domains. For convenience, the integrals are repeated below: 

 

𝐻𝑧1
=

1

(2𝜋)2
∬

ℓ𝐼0𝜇𝑟𝑗𝑘𝑦

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

𝐻𝑧2
=

1

(2𝜋)2
∬

ℓ𝐼0𝑗𝑘𝑦

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

sin[𝑘𝑧2
(𝑧 + ℎ)] 𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

𝐸𝑧1
= −

1

(2𝜋)2
∬

ℓ𝐼0𝜂0𝑘𝑥𝑘𝑧2

𝑘0𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

𝐸𝑧2
= −

1

(2𝜋)2
∬

ℓ𝐼0𝜂0𝑗𝑘𝑥𝑘𝑧1

𝑘0𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

(47) 

 

We introduce the change of variables, 

 𝑘𝑥 = 𝑘𝑡 cos 𝛼 

𝑘𝑦 = 𝑘𝑡 sin 𝛼 

𝑥 = 𝜌 cos 𝜙 

𝑦 = 𝜌 sin 𝜙 

(48) 

Noting that 

 𝑘𝑥𝑥 + 𝑘𝑦𝑦 = 𝑘𝑡𝜌(cos 𝛼 cos 𝜙 + sin 𝛼 sin 𝜙) = 𝑘𝑡𝜌 cos(𝛼 − 𝜙) (49) 
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the integrals in Eq. 47 become 

𝐻𝑧1
=

1

(2𝜋)2
∫ ∫

ℓ𝐼0𝜇𝑟𝑗𝑘𝑡 sin 𝛼

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑡𝜌 cos(𝛼−𝜙)

∞

0

2𝜋

0

𝑘𝑡𝑑𝑘𝑡𝑑𝛼 

𝐻𝑧2
=

1

(2𝜋)2
∫ ∫

ℓ𝐼0𝑗𝑘𝑡 sin 𝛼

𝐷𝑇𝐸 sin(𝑘𝑧2
ℎ)

sin[𝑘𝑧2
(𝑧 + ℎ)] 𝑒−𝑗𝑘𝑡𝜌 cos(𝛼−𝜙)

∞

0

2𝜋

0

𝑘𝑡𝑑𝑘𝑡𝑑𝛼 

𝐸𝑧1
= −

1

(2𝜋)2
∫ ∫

ℓ𝐼0𝜂0𝑘𝑡 cos 𝛼 𝑘𝑧2

𝑘0𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑡𝜌 cos(𝛼−𝜙)

∞

0

2𝜋

0

𝑘𝑡𝑑𝑘𝑡𝑑𝛼 

𝐸𝑧2
= −

1

(2𝜋)2
∫ ∫

ℓ𝐼0𝜂0𝑗𝑘𝑡 cos 𝛼 𝑘𝑧1

𝑘0𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

𝑒−𝑗𝑘𝑡𝜌 cos(𝛼−𝜙)

∞

0

2𝜋

0

𝑘𝑡𝑑𝑘𝑡𝑑𝛼 

(50) 

 

With the aid of the following 2 mathematical identities, 

 

−2𝜋𝑗𝐽1(𝑘𝑡𝜌) cos 𝜙 = ∫ cos 𝛼 𝑒−𝑗𝑘𝑡𝜌 cos(𝛼−𝜙)

2𝜋

0

𝑑𝛼 

−2𝜋𝑗𝐽1(𝑘𝑡𝜌) sin 𝜙 = ∫ sin 𝛼 𝑒−𝑗𝑘𝑡𝜌 cos(𝛼−𝜙)

2𝜋

0

𝑑𝛼 

(51) 

the integral expressions in Eq. 50 reduce to 

𝐻𝑧1
=

ℓ𝐼0𝜇𝑟 sin 𝜙

2𝜋
∫

𝑘𝑡

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧𝐽1(𝑘𝑡𝜌)

∞

0

𝑘𝑡𝑑𝑘𝑡 

𝐻𝑧2
=

ℓ𝐼0 sin 𝜙

2𝜋
∫

𝑘𝑡

𝐷𝑇𝐸

sin[𝑘𝑧2
(𝑧 + ℎ)]

sin(𝑘𝑧2
ℎ)

𝐽1(𝑘𝑡𝜌)

∞

0

𝑘𝑡𝑑𝑘𝑡 

𝐸𝑧1
=

𝑗ℓ𝐼0𝜂0 cos 𝜙

𝑘02𝜋
∫

𝑘𝑡𝑘𝑧2

𝐷𝑇𝑀
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧𝐽1(𝑘𝑡𝜌)

∞

0

𝑘𝑡𝑑𝑘𝑡 

𝐸𝑧2
= −

ℓ𝐼0𝜂0 cos 𝜙

𝑘02𝜋
∫

𝑘𝑡𝑘𝑧1

𝐷𝑇𝑀

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

𝐽1(𝑘𝑡𝜌)

∞

0

𝑘𝑡𝑑𝑘𝑡 

(52) 
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Next, for 𝑓(𝑘𝑡), an odd function of 𝑘𝑡
2 

 

∫ 𝑓(𝑘𝑡)𝐽1(𝑘𝑡𝜌)

∞

0

𝑘𝑡𝑑𝑘𝑡 =
1

2
∫ 𝑓(𝑘𝑡)𝐻1

(2)(𝑘𝑡𝜌)

∞

−∞

𝑘𝑡𝑑𝑘𝑡 (53) 

Using the large argument approximation for the Hankel function3 

 

𝐻1
(2)(𝑘𝑡𝜌) ≈ 𝑗√

2

𝜋𝑘𝑡𝜌
𝑒𝑗

𝜋
4𝑒−𝑗𝑘𝑡𝜌 (54) 

we arrive at the approximate form of the integral expressions for the z-components of the electric 

and magnetic field for large 𝜌: 

𝐻𝑧1
=

𝑗ℓ𝐼0𝜇𝑟 sin 𝜙

4𝜋
𝑒𝑗

𝜋
4 ∫

1

𝐷𝑇𝐸

√
2𝑘𝑡

𝜋𝜌
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑡𝜌

∞

−∞

𝑘𝑡𝑑𝑘𝑡 

𝐻𝑧2
=

𝑗ℓ𝐼0 sin 𝜙

4𝜋
𝑒𝑗

𝜋
4 ∫

1

𝐷𝑇𝐸

√
2𝑘𝑡

𝜋𝜌

sin[𝑘𝑧2
(𝑧 + ℎ)]

sin(𝑘𝑧2
ℎ)

𝑒−𝑗𝑘𝑡𝜌

∞

−∞

𝑘𝑡𝑑𝑘𝑡 

𝐸𝑧1
= −

ℓ𝐼0𝜂0 cos 𝜙

𝑘04𝜋
𝑒𝑗

𝜋
4 ∫

𝑘𝑧2

𝐷𝑇𝑀

√
2𝑘𝑡

𝜋𝜌
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑡𝜌

∞

−∞

𝑘𝑡𝑑𝑘𝑡 

𝐸𝑧2
= −

𝑗ℓ𝐼0𝜂0 cos 𝜙

𝑘04𝜋
𝑒𝑗

𝜋
4 ∫

𝑘𝑧1

𝐷𝑇𝑀

√
2𝑘𝑡

𝜋𝜌

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

𝑒−𝑗𝑘𝑡𝜌

∞

−∞

𝑘𝑡𝑑𝑘𝑡 

(55) 

 

With the integrals put into the above form, it is possible to close an expanding semicircular 

contour around the poles (zeros of 𝐷𝑇𝐸  or 𝐷𝑇𝑀) in the lower complex 𝑘𝑡 plane. Complications 

arise in the proper definition of 𝑘𝑧1
: 

𝑘𝑧1
= √𝑘0

2 − 𝑘𝑡
2
 

which cannot be single-valued and continuous throughout the entire complex 𝑘𝑡 plane. The lines 

across which this function is discontinuous, the branch cuts, depend on the choice of the positive 

or negative root in various regions of the complex 𝑘𝑡 plane. The algebraic form of Sommerfeld’s 

choice for 𝑘𝑧1
 is discussed in Appendix B and is given by 

 
𝑘𝑧1

≡ −√|𝑘0
2 − 𝑘𝑡

2|exp [
𝑗

2
arg0(𝑘0

2 − 𝑘𝑡
2)] (56) 

where arg0(𝑘0
2 − 𝑘𝑡

2) is the value of arg(𝑘0
2 − 𝑘𝑡

2) that lies between 0 and 2𝜋. The branch 

cuts and behavior of 𝑘𝑧1
 for this choice are depicted in the complex 𝑘𝑡 plane in Fig. 2. 
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Fig. 2   Branch cuts and behavior of 𝑘𝑧1
 for this choice in 

the complex 𝑘𝑡 plane 

On the real axis, just above the branch cuts, this definition reduces to the usual requirement that 

waves be attenuated exponentially: 

𝑘𝑧1
= √𝑘0

2 − 𝑘𝑡
2       ,    𝑘𝑡 < 𝑘0  

𝑘𝑧1
= −𝑗√𝑘𝑡

2 − 𝑘0
2      ,    𝑘𝑡 > 𝑘0 

Throughout the rest of the complex plane, Eq. 56 preserves the property that Im(𝑘𝑧1
) < 0. The 

closed contour that we use is shown in Fig. 3. 

 

Fig. 3   The closed contour that we use 
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By the residue theorem, we have 

 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5 + 𝐼6 + 𝐼7 + 𝐼8 = −2𝜋𝑗 ∑ res(𝑘𝑝) (57) 

Since the semicircular arc is expanding into a proper region, Jordan’s Lemma says that this 

integral will go to 0 as the radius of this arc goes to infinity: 

 𝐼2 + 𝐼8 → 0 (58) 

Additionally, the integration around the branch point, 𝐼5, vanishes. Therefore, 

 𝐼1 = −(𝐼3 + 𝐼7) − (𝐼4 + 𝐼6) − 2𝜋𝑗 ∑ res(𝑘𝑝) (59) 

where (𝐼3 + 𝐼7) and (𝐼4 + 𝐼6) do not vanish, since 𝑘𝑧1
 is discontinuous across the branch cuts. 

An asymptotic analysis of the integration around the branch cut by the method of steepest 

descent gives a result for the radiated field that, under certain conditions, is in agreement with 

our earlier results obtained by the method of stationary phase. Thus, Eq. 59 may be interpreted 

physically as a decomposition of the field into radiated and surface wave components. 

In general, the locations of the zeros of either 𝐷𝑇𝐸  or 𝐷𝑇𝑀 must be found by a root-finding 

algorithm on a computer. However, analysis of their expressions indicates that our contour will 

capture these points in quadrant IV of the complex 𝑘𝑡 plane. Furthermore, the real part of these 

zeros will be located somewhere in the interval (𝑘0 , √𝜇𝑟𝜀𝑟𝑘0). In the limit of a lossless 

substrate, 𝜇𝑟 and 𝜀𝑟 are real numbers, and the zeros migrate up to the real axis of the 𝑘𝑡 plane. In 

this limit, it should actually be understood that the zero is “slightly” below the real axis, so that 

the formula Eq. 59 still applies. Otherwise, the formula Eq. 59 would be a discontinuous function 

of the substrate properties in passing from a small amount of loss to no loss.  

Using the expression for 𝐻𝑧1
, the form of a 𝑇𝐸𝑧 surface wave above the substrate is found by 

calculating the residue at any zero of 𝐷𝑇𝐸: 

𝐻𝑧1

𝑆𝑊 =
ℓ𝐼0𝜇𝑟 sin 𝜙

2
𝑒𝑗

𝜋
4 lim

𝑘𝑡→𝑘𝑝

𝑘𝑡 − 𝑘𝑝

√
2𝑘𝑡

𝜋𝜌 𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑡𝜌𝑘𝑡

𝐷𝑇𝐸
 

𝐻𝑧1

𝑆𝑊 =
ℓ𝐼0𝜇𝑟 sin 𝜙

2
𝑒𝑗

𝜋
4√

2𝑘𝑝

𝜋𝜌
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑝𝜌𝑘𝑝 lim

𝑘𝑡→𝑘𝑝

1

𝐷𝑇𝐸(𝑘𝑡) − 𝐷𝑇𝐸(𝑘𝑝)
𝑘𝑡 − 𝑘𝑝

 

 

𝐻𝑧1

𝑆𝑊 =
ℓ𝐼0𝜇𝑟 sin 𝜙

2
𝑒𝑗

𝜋
4√

2𝑘𝑝

𝜋𝜌
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑝𝜌𝑘𝑝

1

𝐷𝑇𝐸
′(𝑘𝑝)

 

 

(60) 
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where 𝐷𝑇𝐸
′(𝑘𝑝) is the derivative of 𝐷𝑇𝐸  with respect to 𝑘𝑡 evaluated at the pole location 𝑘𝑝. 𝑘𝑧1

 

is also evaluated at the pole location. By the same process, we can write the expressions for the 

z-components of the surface wave fields: 

𝑇𝐸𝑧 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑣𝑒 

𝐻𝑧1

𝑆𝑊 =
ℓ𝐼0𝜇𝑟 sin 𝜙

2
𝑒𝑗

𝜋
4√

2𝑘𝑝

𝜋𝜌
𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑝𝜌𝑘𝑝

1

𝐷𝑇𝐸
′(𝑘𝑝)

 

𝐻𝑧2

𝑆𝑊 =
ℓ𝐼0 sin 𝜙

2
𝑒𝑗

𝜋
4√

2𝑘𝑝

𝜋𝜌

sin[𝑘𝑧2
(𝑧 + ℎ)]

sin(𝑘𝑧2
ℎ)

𝑒−𝑗𝑘𝑝𝜌𝑘𝑝

1

𝐷𝑇𝐸
′(𝑘𝑝)

 

 

𝑇𝑀𝑧 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑣𝑒 

𝐸𝑧1

𝑆𝑊 =
𝑗ℓ𝐼0𝜂0 cos 𝜙

2𝑘0
𝑒𝑗

𝜋
4√

2𝑘𝑝

𝜋𝜌
tan(𝑘𝑧2

ℎ) 𝑒−𝑗𝑘𝑧1𝑧𝑒−𝑗𝑘𝑝𝜌𝑘𝑧2
𝑘𝑝

1

𝐷𝑇𝑀
′(𝑘𝑝)

 

𝐸𝑧2

𝑆𝑊 = −
ℓ𝐼0𝜂0 cos 𝜙

2𝑘0
𝑒𝑗

𝜋
4√

2𝑘𝑝

𝜋𝜌

cos[𝑘𝑧2
(𝑧 + ℎ)]

cos(𝑘𝑧2
ℎ)

𝑒−𝑗𝑘𝑝𝜌𝑘𝑧1
𝑘𝑝

1

𝐷𝑇𝑀
′(𝑘𝑝)

 

(61) 

 

6. Radiated Power, Directivity, and Efficiency 

The Poynting vector describing the power flow associated with the far-field radiation is given by 

the following formula: 

 

𝑺𝒂𝒗𝒈 =
1

2𝜂0
𝑅𝑒(𝑬 ∙ 𝑬∗) = 𝒓̂

1

2
(|𝐸𝜃|2 + |𝐸𝜙|

2
) 

 

(62) 

The expressions for 𝐸𝜃 and 𝐸𝜙 were given in Eq. 47. They are repeated below: 

 
𝐸𝜃 =

ℓ𝐼0𝜂0𝑗𝑘𝑥𝑠
𝑘𝑧2𝑠

cot 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
 

𝐸𝜙 = −
ℓ𝐼0𝜂0𝜇𝑟𝑘𝑦𝑠

cot 𝜃

𝐷𝑇𝐸𝑠

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
 

(63) 

Combining Eqs. 62 and 63, we have 
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𝑺𝒂𝒗𝒈 =
ℓ

2𝐼0
2𝜂0

8𝜋2𝑟2
(|

𝑘𝑥𝑠
𝑘𝑧2𝑠

cot 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)|

2

+ |
𝜇𝑟𝑘𝑦𝑠

cot 𝜃

𝐷𝑇𝐸𝑠

|

2

)  
(64) 

The total power radiated is found by integrating the Poynting vector over the surface of a 

hemisphere of radius 𝑟: 

𝑃𝑟𝑎𝑑 =
ℓ

2𝐼0
2𝜂0

8𝜋2𝑟2
∫ ∫ (|

𝑘𝑥𝑠
𝑘𝑧2𝑠

cot 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)|

2

+ |
𝜇𝑟𝑘𝑦𝑠

cot 𝜃

𝐷𝑇𝐸𝑠

|

2

)

𝜋/2

0

2𝜋

0

𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙 

𝑃𝑟𝑎𝑑 =
ℓ

2𝐼0
2𝜂0

8𝜋2
∫ ∫ (|

𝑘𝑥𝑠
𝑘𝑧2𝑠

cot 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)|

2

+ |
𝜇𝑟𝑘𝑦𝑠

cot 𝜃

𝐷𝑇𝐸𝑠

|

2

)

𝜋/2

0

2𝜋

0

sin 𝜃 𝑑𝜃𝑑𝜙 

𝑃𝑟𝑎𝑑 =
ℓ

2𝐼0
2𝜂0

8𝜋2
∫ ∫ (|

𝑘0 sin 𝜃 cos 𝜙 𝑘𝑧2𝑠
cot 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)|

2𝜋/2

0

2𝜋

0

+ |
𝜇𝑟𝑘0 sin 𝜃 sin 𝜙 cot 𝜃

𝐷𝑇𝐸𝑠

|

2

) sin 𝜃 𝑑𝜃𝑑𝜙 

𝑃𝑟𝑎𝑑 =
ℓ

2𝐼0
2𝜂0

8𝜋2
∫ ∫ (|

𝑘0 cos 𝜙 𝑘𝑧2𝑠
cos 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)|

2

+ |
𝜇𝑟𝑘0 sin 𝜙 cos 𝜃

𝐷𝑇𝐸𝑠

|

2

)

𝜋/2

0

2𝜋

0

sin 𝜃 𝑑𝜃𝑑𝜙 

𝑃𝑟𝑎𝑑 =
ℓ

2𝐼0
2𝜂0

8𝜋
∫ (|

𝑘0𝑘𝑧2𝑠
cos 𝜃

𝑘0𝐷𝑇𝑀𝑠

tan (𝑘𝑧2𝑠
ℎ)|

2

+ |
𝜇𝑟𝑘0 cos 𝜃

𝐷𝑇𝐸𝑠

|

2

)

𝜋/2

0

sin 𝜃 𝑑𝜃 

 

𝑃𝑟𝑎𝑑 =
𝑘0

2
ℓ

2𝐼0
2𝜂0

8𝜋
∫ (|

𝑘𝑧2𝑠
tan (𝑘𝑧2𝑠

ℎ)

𝑘0𝐷𝑇𝑀𝑠

|

2

+ |
𝜇𝑟

𝐷𝑇𝐸𝑠

|

2

)

𝜋/2

0

cos2 𝜃 sin 𝜃 𝑑𝜃  
(65) 

The last integration over 𝜃 cannot be done analytically. The directivity is 

 

𝐷(𝜃, 𝜙) =
4𝜋𝑟2|𝑺𝒂𝒗𝒈|

𝑃𝑟𝑎𝑑
 (66) 

Furthermore, we can define the radiation resistance in the usual way: 

 

𝑅𝑟 =
2𝑃𝑟𝑎𝑑

𝐼0
2  

(67) 

We would also like to calculate the power launched into any excited surface waves. If only 1 

surface wave is excited, then it is feasible to use the expressions for the surface wave fields 

derived in the previous section to determine the power. However, a more general procedure that 
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accounts for any power launched into surface waves is used here. Consider the Poynting theorem 

for lossless media: 

 

−
1

2
∭ 𝑬 ∙ 𝑱∗ 𝑑𝑉 = ∯ 𝑺𝒂𝒗𝒈 ∙ 𝒅𝑺 + 𝑗

𝜔

2
∭(𝜇|𝑯|𝟐 − 𝜀|𝑬|𝟐) 𝑑𝑉 

(68) 

If we take the real part of both sides of Eq. 68, then we obtain 

 

𝑃𝑡𝑜𝑡𝑎𝑙 = ∯ 𝑺𝒂𝒗𝒈 ∙ 𝒅𝑺 = −
1

2
Re ∭ 𝑬 ∙ 𝑱∗ 𝑑𝑉 

(69) 

In Eq. 69, we take 𝑺𝒂𝒗𝒈 to be the total power flow produced by the source. Thus, 𝑺𝒂𝒗𝒈 in Eq. 69 

is not the same 𝑺𝒂𝒗𝒈 that was used in Eq. 64 to calculate the power radiated into the upper 

hemisphere. Working with Eq. 69, 

𝑃𝑡𝑜𝑡𝑎𝑙 = −
1

2
Re ∭ 𝑬 ∙ (𝒙̂ℓ𝐼0𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)) 𝑑𝑉 

 

𝑃𝑡𝑜𝑡𝑎𝑙 = −
1

2
Re ∬ 𝐸𝑥│𝑧=0

∞

−∞

ℓ𝐼0𝛿(𝑥)𝛿(𝑦)𝑑𝑥𝑑𝑦 (70) 

By Parseval’s theorem, Eq. 70 is equivalent to 

 

𝑃𝑡𝑜𝑡𝑎𝑙 = −
1

8𝜋2
Re ∬ 𝐸𝑥̃│𝑧=0

∞

−∞

ℓ𝐼0𝑑𝑘𝑥𝑑𝑘𝑦  (71) 

In order to use Eq. 71, we have to detour slightly to derive a convenient expression for 𝐸𝑥̃. 𝐸𝑥̃ 

may be found from the vector potential as follows: 

 
𝐸𝑥̃│𝑧=0

=
1

𝑗𝜔𝜇𝜀
[−𝑗𝑘𝑥

𝜕𝐴𝑧1
̃

𝜕𝑧
+ (𝑘𝑧1

2 + 𝑘𝑦
2)𝐴𝑥1

̃ ]│
𝑧=0+  (72) 

From Eq. 29, we have 

 
𝐴𝑥1
̃ =

𝜇0𝜇𝑟ℓ𝐼0

𝐷𝑇𝐸
𝑒−𝑗𝑘𝑧1𝑧 

𝐴𝑧1
̃ =

−𝜇0ℓ𝐼0𝑗𝑘𝑥(𝜇𝑟𝜀𝑟 − 1)

𝐷𝑇𝐸𝐷𝑇𝑀
𝑒−𝑗𝑘𝑧1𝑧         

(73) 

Combining Eqs. 72 and 73, we have 

 
𝐸𝑥̃│𝑧=0

= ℓ𝐼0𝜂0 [
𝑘𝑥

2𝑘𝑧1
(𝜇𝑟𝜀𝑟 − 1)

𝑘0𝐷𝑇𝐸𝐷𝑇𝑀
−

𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] (74) 

Equation 74 can be manipulated into a form more convenient for the integration that follows. We 

begin by substituting Eq. 34 into Eq. 74, yielding 
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𝐸𝑥̃│𝑧=0

= ℓ𝐼0𝜂0 [
𝑘𝑥

2𝑘𝑧1
(𝑘𝑧2

2 − 𝜇𝑟𝜀𝑟𝑘𝑧1

2)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] (75) 

From the definition of 𝐷𝑇𝑀, we have 

 𝜀𝑟𝑘𝑧1
= −𝑗(𝐷𝑇𝑀 + 𝑘𝑧2

tan(𝑘𝑧2
ℎ)) (76) 

Combining Eqs. 75 and 76, 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

[𝑘𝑧2

2 + 𝑗𝜇𝑟𝑘𝑧1
(𝐷𝑇𝑀 + 𝑘𝑧2

tan(𝑘𝑧2
ℎ))]

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

[𝑘𝑧2

2 + 𝑗𝜇𝑟𝑘𝑧1
𝑘𝑧2

tan(𝑘𝑧2
ℎ) + 𝑗𝜇𝑟𝑘𝑧1

𝐷𝑇𝑀]

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

[𝑘𝑧2

2 + 𝑗𝜇𝑟𝑘𝑧1
𝑘𝑧2

tan(𝑘𝑧2
ℎ)]

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀

+
𝑗𝜇𝑟𝑘𝑥

2𝑘𝑧1

2

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

[𝑘𝑧2

2 + 𝑗𝜇𝑟𝑘𝑧1
𝑘𝑧2

tan(𝑘𝑧2
ℎ)] cot(𝑘𝑧2

ℎ)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀 cot(𝑘𝑧2
ℎ)

+
𝑗𝜇𝑟𝑘𝑥

2𝑘𝑧1

2

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
[𝑘𝑧2

cot(𝑘𝑧2
ℎ) + 𝑗𝜇𝑟𝑘𝑧1

]

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀 cot(𝑘𝑧2
ℎ)

+
𝑗𝜇𝑟𝑘𝑥

2𝑘𝑧1

2

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
[𝐷𝑇𝐸]

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸𝐷𝑇𝑀 cot(𝑘𝑧2
ℎ)

+
𝑗𝜇𝑟𝑘𝑥

2𝑘𝑧1

2

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

−
𝑗𝜇𝑟(𝑘𝑧1

2 + 𝑘𝑦
2)

𝑘0𝐷𝑇𝐸
] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

+
𝑗𝜇𝑟𝑘𝑥

2𝑘𝑧1

2 − 𝑗𝜇𝑟(𝑘𝑥
2 + 𝑘𝑦

2)(𝑘𝑧1

2 + 𝑘𝑦
2)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

+
𝑗𝜇𝑟𝑘𝑥

2𝑘𝑧1

2 − 𝑗𝜇𝑟(𝑘𝑥
2 + 𝑘𝑦

2)(𝑘𝑧1

2 + 𝑘𝑦
2)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

+
𝑗𝜇𝑟(𝑘𝑥

2𝑘𝑧1

2 − 𝑘𝑥
2𝑘𝑧1

2 − 𝑘𝑦
2𝑘𝑧1

2 − 𝑘𝑥
2𝑘𝑦

2 − 𝑘𝑦
4)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

−
𝑗𝜇𝑟𝑘𝑦

2(𝑘𝑧1

2 + 𝑘𝑥
2 + 𝑘𝑦

2)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

] 

𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

−
𝑗𝜇𝑟𝑘𝑦

2(𝑘0
2)

(𝑘𝑥
2 + 𝑘𝑦

2)𝑘0𝐷𝑇𝐸

] 
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𝐸𝑥̃│𝑧=0
= ℓ𝐼0𝜂0 [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

−
𝑗𝜇𝑟𝑘𝑦

2𝑘0

(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝐸

]  

 

(77) 

Substitution of Eq. 77 into Eq. 71 gives 

𝑃𝑡𝑜𝑡𝑎𝑙 = −
ℓ

2𝐼0
2𝜂0

8𝜋2
Re ∬ [

𝑘𝑥
2𝑘𝑧1

𝑘𝑧2
tan(𝑘𝑧2

ℎ)

𝑘0(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝑀

−
𝑗𝜇𝑟𝑘𝑦

2𝑘0

(𝑘𝑥
2 + 𝑘𝑦

2)𝐷𝑇𝐸

]

∞

−∞

𝑑𝑘𝑥𝑑𝑘𝑦 (78) 

We then introduce the change of variables into Eq. 78: 

 𝑘𝑥 = 𝑘𝑡 cos 𝛼 

𝑘𝑦 = 𝑘𝑡 sin 𝛼 
(79) 

yielding 

𝑃𝑡𝑜𝑡𝑎𝑙 = −
ℓ

2𝐼0
2𝜂0

8𝜋2
Re ∫ ∫ [

cos2 𝛼 𝑘𝑧1
𝑘𝑧2

tan(𝑘𝑧2
ℎ)

𝑘0𝐷𝑇𝑀
−

𝑗𝜇𝑟𝑘0 sin2 𝛼

𝐷𝑇𝐸
]

∞

0

2𝜋

0

𝑘𝑡𝑑𝑘𝑡𝑑𝛼 

𝑃𝑡𝑜𝑡𝑎𝑙 = −
ℓ

2𝐼0
2𝜂0

8𝜋
Re ∫ [

𝑘𝑧1
𝑘𝑧2

tan(𝑘𝑧2
ℎ)

𝑘0𝐷𝑇𝑀
−

𝑗𝜇𝑟𝑘0

𝐷𝑇𝐸
]

∞

0

𝑘𝑡𝑑𝑘𝑡  

 

(80) 

In the limit of a lossless substrate, poles exist along the integration interval of Eq. 80, thus this 

integral must be interpreted in terms of Cauchy principal value integrals. This is similar to what 

was done earlier in the analysis of the surface wave fields. If we interpret Eq. 80 as a contour 

integral along the real axis of the complex 𝑘𝑡 plane, and we adopt the same definition for 𝑘𝑧1
, 

then we may integrate along any path so long as we start and stop at the same points, since all the 

functions in the integrand are analytic. Consider the contour shown in Fig. 4, where the 

integration path avoids the difficulties associated with the poles by integrating around them.4 

 

Fig. 4   Alternative path of integration 
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We have 

𝑃𝑡𝑜𝑡𝑎𝑙 = Re(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4) 

However, the integrand for 𝐼4 is pure imaginary so long as the starting point is past √𝜇𝑟𝜀𝑟𝑘0, so 

that the total power can be found by numerically integrating around the box 𝐼1 + 𝐼2 + 𝐼3. The 

difference between the total power and the radiated power is the power launched into surface 

waves. We define 

 𝑃𝑆𝑊 = 𝑃𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑟𝑎𝑑  (81) 

Additionally, it is worth noting that integrating from 0 to 𝑘0 gives the power radiated into the 

upper hemisphere.5 Although a proof of this fact is not known to the author, numerical 

calculations were always in agreement with results obtained from Eq. 65. Lastly, we may define 

a surface wave resistance and efficiency as 

 

𝑅𝑟 =
2𝑃𝑟𝑎𝑑

𝐼0
2  

(82) 

 

%𝑒𝑓𝑓 =
𝑃𝑟𝑎𝑑

𝑃𝑡𝑜𝑡𝑎𝑙
 

(83) 

Some numerical results obtained from the formulas in this section are included in Figs. 5–16. 

Note that wavelengths on the horizontal axis are measured as wavelengths in that material, and 

not in terms of free space wavelength. In all cases, a dipole whose length is 1/50 of the free 

space wavelength is assumed. 

For 𝜀𝑟 = 1.01; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50   
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Fig. 5   Equivalent resistances of a horizontal infinitesimal dipole situated 

on a dielectric substrate; 𝜀𝑟 = 1.01; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50 

 

Fig. 6   Directivity of a horizontal dipole situated on a dielectric substrate; 

𝜀𝑟 = 1.01; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50 
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Fig. 7   Efficiency of a horizontal infinitesimal dipole situated on a dielectric substrate; 

𝜀𝑟 = 1.01; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50 

For 𝜀𝑟 = 10; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50  

 

Fig. 8   Equivalent resistances of a horizontal infinitesimal dipole situated on a 

dielectric substrate; 𝜀𝑟 = 10; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50  
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Fig. 9   Directivity of a horizontal infinitesimal dipole situated on a dielectric 

substrate; 𝜀𝑟 = 10; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50  

 

Fig. 10   Efficiency of a horizontal infinitesimal dipole situated on a dielectric 

substrate; 𝜀𝑟 = 10; 𝜇𝑟 = 1.01; ℓ = 𝜆0/50  

For 𝜀𝑟 = 1.01; 𝜇𝑟 = 10; ℓ = 𝜆0/50  
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Fig. 11   Equivalent resistances of a horizontal infinitesimal dipole situated on 

a dielectric substrate; 𝜀𝑟 = 1.01; 𝜇𝑟 = 10; ℓ = 𝜆0/50  

 

Fig. 12   Directivity of a horizontal infinitesimal dipole situated on a dielectric 

substrate; 𝜀𝑟 = 1.01; 𝜇𝑟 = 10; ℓ = 𝜆0/50  
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Fig. 13   Efficiency of a horizontal infinitesimal dipole situated on a dielectric 

substrate; 𝜀𝑟 = 1.01; 𝜇𝑟 = 10; ℓ = 𝜆0/50  

For 𝜀𝑟 = 10; 𝜇𝑟 = 10; ℓ = 𝜆0/50  

 

Fig. 14   Equivalent resistances of a horizontal infinitesimal dipole situated on 

a dielectric substrate; 𝜀𝑟 = 10; 𝜇𝑟 = 10; ℓ = 𝜆0/50  
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Fig. 15   Directivity of a horizontal infinitesimal dipole situated on a dielectric 

substrate; 𝜀𝑟 = 10; 𝜇𝑟 = 10; ℓ = 𝜆0/50  

 

Fig. 16   Efficiency of a horizontal infinitesimal dipole situated on a dielectric 

substrate; 𝜀𝑟 = 10; 𝜇𝑟 = 10; ℓ = 𝜆0/50  
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7. Conclusion 

In this report, the solution of the boundary value problem associated with dipole radiation over 

grounded magnetodielectric substrates was treated. The mathematical details, which proved 

difficult to find in the literature, were reproduced. The analysis of these solutions in the 

subsequent sections derived the radiation field, surface wave fields, directivity, radiation 

resistance, and efficiency. Some numerical results were plotted in Figs. 5–16. From this small 

sampling of data, we can already conclude that the behavior of planar antennas printed on 

magnetodielectric substrates is very complicated and non-intuitive. For example, Fig. 14 

indicates that a very small dipole printed on a very thin substrate could easily present an input 

impedance of 50 ohms at its terminals. However, despite conventional wisdom that quarter-

wavelength substrates make very effective radiators, Fig. 14 indicates that essentially all of the 

available power is delivered to surface waves excited within the substrate itself, which will not 

necessarily lead to desirable performance. 

Furthermore, a novel treatment of the complex valued square roots was shown to produce results 

in agreement with those discussed in the literature with an arguably less tortured mathematical 

procedure. Appendix B can be consulted for an explanation of this approach and a derivation of 

the properties of the complex valued square roots in the complex plane. This should find 

application to other boundary value problems (such as the present one) for which solutions are 

obtained using Fourier transforms and those that require the determination of inverse transforms 

to extract useful formulas.   
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Appendix A. Boundary Conditions 
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The boundary conditions used in the derivation of the magnetic vector potential are developed in 

this appendix. The preliminary assumption made in the analysis of the problem was that the 

electromagnetic field could be modeled by 2 components of the vector magnetic potential:  

 𝑨 = 𝒙̂𝐴𝑥 + 𝒛̂𝐴𝑧 (A-1) 

The electromagnetic field associated with this vector potential is 

 
𝑯 =

1

𝜇
∇ × 𝑨 

𝑬 =
1

𝑗𝜔𝜀
∇ × 𝑯 

(A-2) 

Substituting Eq. A-1 into Eq. A-2 yields 

𝑯 =
1

𝜇
[𝒙̂

𝜕𝐴𝑧

𝜕𝑦
+ 𝒚̂ (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) − 𝒛̂

𝜕𝐴𝑥

𝜕𝑦
] 

𝑬 =
1

𝑗𝜔𝜇𝜀
[𝒙 (

𝜕2𝐴𝑧

𝜕𝑥𝜕𝑧
−

𝜕2𝐴𝑥

𝜕𝑧2
−

𝜕2𝐴𝑥

𝜕𝑦2
) + 𝒚̂ (

𝜕2𝐴𝑧

𝜕𝑦𝜕𝑧
+

𝜕2𝐴𝑥

𝜕𝑥𝜕𝑦
)

+ 𝒛̂ (
𝜕2𝐴𝑥

𝜕𝑥𝜕𝑧
−

𝜕2𝐴𝑧

𝜕𝑥2
−

𝜕2𝐴𝑧

𝜕𝑦2
)] 

(A-3) 

Given the general form of solution, Eq. A-3 may be reformulated as follows: 

 
𝑯̃ =

1

𝜇
[−𝒙̂(𝑗𝑘𝑦𝐴𝑧̃) + 𝒚̂ (

𝜕𝐴𝑥̃

𝜕𝑧
+ 𝑗𝑘𝑥𝐴𝑧̃) + 𝒛̂(𝑗𝑘𝑦𝐴𝑥̃)] (A-4) 

𝑬̃ =
1

𝑗𝜔𝜇𝜀
[𝒙 (−𝑗𝑘𝑥

𝜕𝐴𝑧̃

𝜕𝑧
+ (𝑘2 − 𝑘𝑥

2)𝐴𝑥̃) − 𝒚̂ (𝑗𝑘𝑦

𝜕𝐴𝑧̃

𝜕𝑧
+ 𝑘𝑥𝑘𝑦𝐴𝑥̃)

+ 𝒛̂ (−𝑗𝑘𝑥

𝜕𝐴𝑥̃

𝜕𝑧
+ (𝑘2 − 𝑘𝑧

2)𝐴𝑧̃)] 
(A-5) 

At = −ℎ , a PEC interface requires 

 𝒛̂ × 𝑬̃ = 0 (A-6) 

 𝒛̂ ∙ 𝑯̃ = 0 (A-7) 

Substituting Eq. A-4 into Eq. A-7, we immediately obtain 

 𝐴𝑥2
̃ │𝑧=−ℎ = 0  (A-8) 

Then, if we apply Eq. A-6 to the 𝒚̂ component of the electric field in Eq. A-5 

 
(−𝑗𝑘𝑦

𝜕𝐴𝑧2
̃

𝜕𝑧
− 𝑘𝑥𝑘𝑦𝐴𝑥2

̃ ) │𝑧=−ℎ = 0 (A-9) 
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Use of Eq. A-8 in Eq. A-9 yields the other boundary condition applicable at the PEC interface: 

 
𝜕𝐴𝑧2

̃

𝜕𝑧
│𝑧=−ℎ = 0  

(A-10) 

Now, we consider the boundary condition: 

 𝒛̂ × (𝑯𝟏 − 𝑯𝟐) = 𝑱𝒔. (A-11) 

In reality, there is no surface current, yet reconsider the current density: 

 𝑱 = 𝒙̂ℓ𝐼0𝛿(𝒓) = 𝒙̂ℓ𝐼0𝛿(𝑥)𝛿(𝑦)𝛿(𝑧). (A-12) 

Using the integral representation of the delta functions 

 
𝛿(𝑥) =

1

2𝜋
∫ 𝑒−𝑗𝑘𝑥𝑥𝑑𝑘𝑥

∞

−∞

 

𝛿(𝑦) =
1

2𝜋
∫ 𝑒−𝑗𝑘𝑦𝑥𝑑𝑘𝑦

∞

−∞

 

(A-13) 

we have 

 
𝑱 =

1

(2π)2
∬[𝒙̂ℓ𝐼0𝛿(𝑧)]𝑒−𝑗𝑘𝑥𝑥

∞

−∞

𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 (A-14) 

We identify 

 𝑱̃ = 𝒙̂ℓ𝐼0𝛿(𝑧) = 𝑱𝒔̃𝛿(𝑧) (A-15) 

and therefore 

 𝒛̂ × (𝑯𝟏̃ − 𝑯𝟐̃) = 𝒙̂ℓ𝐼0 (A-16) 

Using Eq. A-4 in Eq. A-16 yields 2 equations: 

 
𝐴𝑧1
̃ │𝑧=0+ =

1

𝜇𝑟
𝐴𝑧2
̃ │𝑧=0−  (A-17) 

 
(

𝜕𝐴𝑥1
̃

𝜕𝑧
− 𝑗𝑘𝑥𝐴𝑧1

̃ ) │𝑧=0 −
1

𝜇𝑟
(

𝜕𝐴𝑥2
̃

𝜕𝑧
− 𝑗𝑘𝑥𝐴𝑧2

̃ ) │𝑧=0 = −𝜇0ℓ𝐼0 (A-18) 

Rearranging Eq. A-18, 

 
(

𝜕𝐴𝑥1
̃

𝜕𝑧
−

1

𝜇𝑟

𝜕𝐴𝑥2
̃

𝜕𝑧
) │𝑧=0 − 𝑗𝑘𝑥 (𝐴𝑧1

̃ −
1

𝜇𝑟
𝐴𝑧2
̃ ) │𝑧=0 = −𝜇0ℓ𝐼0 (A-19) 

Using Eq. A-17 in Eq. A-19, we obtain 
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 𝜕𝐴𝑥1
̃

𝜕𝑧
│

𝑧=0+ −
1

𝜇𝑟

𝜕𝐴𝑥2
̃

𝜕𝑧
│

𝑧=0− = −𝜇0ℓ𝐼0  (A-20) 

We can obtain another boundary condition on the vector potentials from 

 
𝒛̂ ∙ (𝑯𝟏̃ −

1

𝜇𝑟
𝑯𝟐̃)│

𝑧=0
= 0 (A-21) 

which gives 

 𝐴𝑥1
̃ │

𝑧=0+ = 𝐴𝑥2
̃ │

𝑧=0−  (A-22) 

Our final boundary condition must come from 

 𝒛̂ × (𝑬̃𝟏 − 𝑬̃𝟐)│
𝑧=0

= 0 (A-23) 

Applying Eq. A-23 to the 𝒚̂ component of the electric field in Eq. A-5, we find 

(−𝑗𝑘𝑦

𝜕𝐴𝑧1
̃

𝜕𝑧
− 𝑘𝑥𝑘𝑦𝐴𝑥1

̃ )│
𝑧=0

−
1

𝜇𝑟𝜀𝑟
(−𝑗𝑘𝑦

𝜕𝐴𝑧2
̃

𝜕𝑧
− 𝑘𝑥𝑘𝑦𝐴𝑥2

̃ )│
𝑧=0

= 0 (A-24) 

Rearranging Eq. A-24, 

−𝑗𝑘𝑦 (
𝜕𝐴𝑧1

̃

𝜕𝑧
−

1

𝜇𝑟𝜀𝑟
𝐴𝑥1
̃

𝜕𝐴𝑧2
̃

𝜕𝑧
)│

𝑧=0
− 𝑘𝑥𝑘𝑦 (𝐴𝑥1

̃ −
1

𝜇𝑟𝜀𝑟
𝐴𝑥2
̃ )│

𝑧=0
= 0 (A-25) 

Substitution of Eq. A-22 into Eq. A-25 gives 

 𝜕𝐴𝑧1
̃

𝜕𝑧
│

𝑧=0+ −
1

𝜇𝑟𝜀𝑟

𝜕𝐴𝑧2
̃

𝜕𝑧
│

𝑧=0− = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟
𝐴𝑥1
̃ │

𝑧=0
 (A-26) 

In total, there are 6 unique boundary conditions applicable to the magnetic vector potential. They 

have been derived in this appendix from the boundary conditions satisfied by the electric and 

magnetic fields. They are repeated together as Eq. A-27. 

 𝐴𝑥2
̃ │𝑧=−ℎ = 0 

𝜕𝐴𝑧2
̃

𝜕𝑧
│𝑧=−ℎ = 0 

𝐴𝑧1
̃ │𝑧=0+ =

1

𝜇𝑟
𝐴𝑧2
̃ │𝑧=0− 

𝜕𝐴𝑥1
̃

𝜕𝑧
│𝑧=0+ −

1

𝜇𝑟

𝜕𝐴𝑥2
̃

𝜕𝑧
│𝑧=0− = −𝜇0ℓ𝐼0 

𝐴𝑥1
̃ │𝑧=0+ = 𝐴𝑥2

̃ │𝑧=0− 

𝜕𝐴𝑧1
̃

𝜕𝑧
│𝑧=0+ −

1

𝜇𝑟𝜀𝑟

𝜕𝐴𝑧2
̃

𝜕𝑧
│𝑧=0− = 𝑗𝑘𝑥

𝜇𝑟𝜀𝑟 − 1

𝜇𝑟𝜀𝑟
𝐴𝑥1
̃ │𝑧=0 

(A-27) 
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Appendix B. Branch Cuts 
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The definition of 𝑘𝑧1
 for real values of 𝑘𝑡 is 

 
𝑘𝑧1

= √𝑘0
2 − 𝑘𝑡

2       ,    𝑘𝑡 < 𝑘0  

𝑘𝑧1
= −𝑗√𝑘𝑡

2 − 𝑘0
2      ,    𝑘𝑡 > 𝑘0 

(B-1) 

In order to employ the methods of complex integration, this definition must be extended to the 

whole complex 𝑘𝑡 plane. The definition we use for 𝑘𝑧1
 is 

 
𝑘𝑧1

≡ −√|𝑘0
2 − 𝑘𝑡

2|exp [
𝑗

2
arg0(𝑘0

2 − 𝑘𝑡
2)] (B-2) 

In Eq. B-2, arg0(𝑧) is the value of arg(𝑧) that lies in the interval (0,2𝜋]. This is depicted 

graphically as follows: 

 
From the graph, we see that arg0(𝑧) is discontinuous if we cross the positive real axis in the 𝑧 

plane. The real axis is said to form the branch cut for arg0(𝑧) and arg0(𝑧) is said to be a 

particular branch of the multi-valued arg(𝑧) function. Now, 𝑧 = 𝑘0
2 − 𝑘𝑡

2
, so that we may map 

the branch cuts from the 𝑧 plane to the 𝑘𝑡 plane. The real and imaginary parts of 𝑧, 𝑘0, 𝑘𝑡 are 

denoted as 

 𝑧 = 𝑥 + 𝑗𝑦 

𝑘0 = 𝑘0𝑟
+ 𝑗𝑘0𝑖

  

𝑘𝑡 = 𝑘𝑡𝑟
+ 𝑗𝑘𝑡𝑖

 

(B-3) 
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Then, 

 𝑥 + 𝑗𝑦 = (𝑘0𝑟

2 − 𝑘0𝑖

2 − 𝑘𝑡𝑟

2 +  𝑘𝑡𝑖

2) + 𝑗2(𝑘0𝑟
𝑘0𝑖

− 𝑘𝑡𝑟
𝑘𝑡𝑖

) (B-4) 

The positive real axis in the 𝑧 plane corresponds to the conditions 

 𝑧 = 𝑥 + 𝑗𝑦 

𝑥 ≥ 0  

𝑦 = 0 

(B-5) 

such that the equations defining the branch cuts in the 𝑘𝑡 plane are seen to be 

 𝑘0𝑟

2 − 𝑘0𝑖

2 − 𝑘𝑡𝑟

2 +  𝑘𝑡𝑖

2 ≥ 0  

𝑘0𝑟
𝑘0𝑖

− 𝑘𝑡𝑟
𝑘𝑡𝑖

= 0 
(B-6) 

The second of these equations defines a hyperbola in the 𝑘𝑡 plane: 

 
𝑘𝑡𝑟

=
𝑘0𝑟

𝑘0𝑖

𝑘𝑡𝑖

 (B-7) 

Since 𝑘0𝑖
 must be a negative number to give attenuation, this hyperbola will appear as shown: 

 
From Eq. B-6, the real part must be greater than 0. The endpoint of our hyperbolic curves must 

occur where 𝑧 = 0. This corresponds to the points 𝑘𝑡 = ±𝑘0. Our branch cuts are as follows: 
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In the limit of no loss, 𝑘0𝑖
→ 0. Equation B-7 indicates that in this limit, the hyperbola will 

shrink inward to the coordinate axes. The governing equations for the branch cut reduce to 

 𝑘0𝑟

2 − 𝑘𝑡𝑟

2 +  𝑘𝑡𝑖

2 ≥ 0  

𝑘𝑡𝑟
𝑘𝑡𝑖

= 0 
(B-8) 

These equations admit 2 solutions. That is, 

𝑘𝑡𝑟
= 0     (𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑎𝑥𝑖𝑠)  

𝑘𝑡𝑖
= 0 ;  |𝑘𝑡𝑟

| ≤ |𝑘0|     (𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒  𝑟𝑒𝑎𝑙 𝑎𝑥𝑖𝑠 𝑓𝑟𝑜𝑚 − 𝑘0 𝑡𝑜 + 𝑘0) 
(B-9) 

This is consistent with the physical picture of hyperbolas collapsing inward toward the 

coordinate axes. The branch cuts are depicted as follows: 

 
In view of Eq. B-1, and in order to obtain convergent integrals, we insist that Im(𝑘𝑧1

) ≤ 0. We 

must verify that definition Eq. B-2 satisfies this requirement. In quadrant 1, we know that 𝑘𝑡𝑟
>

0 and 𝑘𝑡𝑖
> 0. So that, 

 
𝑧 = 𝑥 + 𝑗𝑦 = (𝑘0𝑟

2 − 𝑘𝑡𝑟

2 + 𝑘𝑡𝑖

2) − 𝑗2𝑘𝑡𝑟
𝑘𝑡𝑖

 

𝑦 ≤ 0  
(B-10) 

Thus, in quadrant 1, we have 

 𝜋

2
≤

1

2
arg0(𝑘0

2 − 𝑘𝑡
2) ≤ π 

(B-11) 

and 

 
Re {exp [

𝑗

2
arg0(𝑘0

2 − 𝑘𝑡
2)]} ≤ 0 

Im {exp [
𝑗

2
arg0(𝑘0

2 − 𝑘𝑡
2)]} ≥ 0 

(B-12) 
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In view of Eq. B-2 and Eq. B-12, we can conclude that within quadrant 1, the following 

inequalities hold: 

 Re(𝑘𝑧1
) ≥ 0 

Im(𝑘𝑧1
) ≤ 0 

(B-13) 

This analysis can be repeated for quadrants 2, 3, 4. The topology for 𝑘𝑧1
 is summarized as 

follows: 

 

 

  



 

40 

 1 DEFENSE TECHNICAL  

 (PDF)  INFORMATION CTR  

  DTIC OCA  

 

 1 GOVT PRINTG OFC 

  (PDF)  A MALHOTRA 

 

 2 DIRECTOR  

 (PDF)  US ARMY RSRCH LAB  

  RDRL CIO LL  

  RDRL IMAL HRA RECORDS MGMT  

 

 1 DIRECTOR 

 (PDF) US ARMY RSRCH LAB 

  RDRL SER M 

  GREGORY A TALALAI 

 

 1 BRANCH CHIEF  

 (PDF)  CERDEC 

  RDER STA R G PALAFOX 

 

 


